# Weitere Verbindungen mit Verwandtschaft zum $\alpha$ -Ba<sub>2</sub>ScAlO<sub>5</sub>-Typ: Ba<sub>6</sub>Rh<sub>2,33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub>, Ba<sub>5,5</sub>Ca<sub>0,5</sub>Rh<sub>2</sub>Y<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub>

# D. Schüter und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40-60, W-2300 Kiel (Deutschland)

(Eingegangen am 12. Dezember 1992)

### Abstract

Single crystals of the compounds  $Ba_6Rh_{2,33}Yb_2Al_{1,67}O_{15}$  (I),  $Ba_{5,5}Ca_{0,5}Rh_2Y_2Al_2O_{15}$  (II) and  $Ba_6Rh_4Al_2O_{15}$  (III) were prepared by flux technique. X-ray work shows 6L-Perovskite structure and relationships to  $\alpha$ -Ba\_2SCAlO<sub>5</sub>. They crystallize in the space group  $D_{3h}^1 - P\delta m^2$ ; I: a 5.854, c 14.660 Å; II: a 5.859, c 14.691 Å; III: a 5.865, c 14.626 Å, Z=1. The crystal structures are characterized by  $Rh_2O_9$  and  $Al_2O_9$  double octahedra and in example III by single RhO<sub>6</sub> octahedra in positions of the LnO<sub>6</sub> octahedra.

#### Zusammenfassung

Einkristalle von den Stoffen Ba<sub>6</sub>Rh<sub>2,33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub> (I), Ba<sub>5,5</sub>Ca<sub>0,5</sub>Rh<sub>2</sub>Y<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> (II) und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub> (III) wurden mit Schmelzmitteltechnik dargestellt. Röntgenographische Untersuchungen zeigen die 6L-Perowskitstruktur und Verwandtschaft zu  $\alpha$ -Ba<sub>2</sub>ScAlO<sub>5</sub>. Die Stoffe Kristallisieren in der Raumgruppe  $D_{3h}^1 - P\bar{0}m^2$  mit I: a 5,854, c 14, 660 Å; II: a 5,859, c 14,691 Å; III: a 5,865, c 14,626 Å, Z=1. Die Kristallstrukturen sind durch Rh<sub>2</sub>O<sub>9</sub>- und Al<sub>2</sub>O<sub>9</sub>-Doppeloktaeder charakterisiert. Substanz III zeigt Rh in oktaedrischer Koordination auf Positionen der Lanthanoidionen.

#### 1. Einleitung

Kürzlich wurde erstmals über einen 6L-Perowskit mit Rhodium der Zusammensetzung  $Ba_6Rh_2Ho_2Al_2O_{15}$  [1] berichtet. Dieser Perowskit ist durch flächenverknüpfte  $Rh_2O_9$ -Doppeloktaeder ausgezeichnet. Verknüpfungen dieser Art wurden bei Edelmetall-Oxometallaten bereits häufig beobachtet. Aufgeführt seien:  $Ba_3EuIr_2O_9$  [2],  $Ba_2InIrO_6$  [3],  $Ba_2EuIrO_6$  [4],  $Ba_5Ir_2AlO_{11}$  [5],  $BaIr_{0,3}Co_{0,7}O_{2,83}$  [6] und  $Ba_{0,67}Sr_{0,33}IrO_3$ ,  $Ba_{0,83}Sr_{0,17}$ - $RuO_3$  [7]. Weitere Beispiele mit  $M_2O_9$ -Baugruppen zeigen die Halogeno-Oxometallate der Edelmetalle wie  $Ba_5RuTaO_9Cl_2$  [8],  $Ba_5Ru_2O_9Cl_2$  [9],  $Ba_7Ru_4O_{15}Cl_2$  [10] und  $Ba_8Ru_3Ta_2O_{18}Br_2$  [11]. Die zitierten Verbindungen sind fast ausschliesslich an Einkristallen untersucht worden. Es ist jedoch erstaunlich, dass Rhodium bisher ausser acht gelassen wurde.

Mit der Synthese von Ba<sub>6</sub>Rh<sub>2</sub>Ho<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> [1] eröffnete sich ein weites Feld von 6L-Perowskiten, deren Zusammensetzung bezüglich der Lanthanoide und der Erdalkalimetallionen variabel ist. Der folgende Beitrag berichtet über solche Untersuchungen. 2. Darstellung von Einkristallen der Stoffe Ba<sub>6</sub>Rh<sub>2,33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub> (I), Ba<sub>5,5</sub>Ca<sub>0,5</sub>Rh<sub>2</sub>Y<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> (II) und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub> (III) mit anschliessender röntgenographischer Untersuchung

Wie für den überwiegenden Teil der in der Einleitung aufgeführten Verbindungen, wurde auch hier das Edelmetall elementar eingesetzt. Die Reaktion von Rhodiumpulver mit BaO (aus  $Ba(OH)_2 \cdot 8H_2O$ ) bzw. BaCO<sub>3</sub> und Lanthanoidoxiden sowie Aluminiumoxid erfolgte in Gegenwart des Schmelzmittels  $BaCl_2 \cdot 2H_2O$ . Ein Gemenge aus  $BaCO_3 + Al_2O_3$  wurde zur Synthese von I mit Yb<sub>2</sub>O<sub>3</sub>, von II mit Y<sub>2</sub>O<sub>3</sub> und CaCO<sub>3</sub> und von III ohne Lanthanoidoxid, in Gegenwart eines vierfachen Uberschusses an BaCl<sub>2</sub> während 24 h auf 500°C und anschliessend mit 1°/h bis auf 1050°C im Korundschiffchen aufgeheizt. Innerhalb von 6 Tagen bildeten sich schwarze hexagonale Plättchen der Stoffe I-III. Diese wurden aus dem erkalteten Reaktionsansatz mechanisch isoliert und mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) analytisch untersucht. Mit standardfreier Messtechnik wurden die Metalle halbquantitativ bestimmt. Die ermittelten Werte stim-

|                               | I                                                                        | II                                  | III                        |  |  |
|-------------------------------|--------------------------------------------------------------------------|-------------------------------------|----------------------------|--|--|
| Gitterkonstanten (Å)          | a 5,8536(7)                                                              | a 5,8590(10)                        | a 5,8652(12)               |  |  |
|                               | c 14,6599(32)                                                            | c 14,6914(65)                       | c 14,6264(57)              |  |  |
| Zellvolumen (Å <sup>3</sup> ) | 435,02                                                                   | 435,27                              | 435,75                     |  |  |
| Zahl der Formeleinheiten      | 1                                                                        | 1                                   | 1                          |  |  |
| Raumgruppe                    | $D_{3h}^1 - P\bar{6}m2$                                                  | $D_{3h}^1 - P\bar{6}m2$             | $D_{3h}^1 - P\ddot{6}m^2$  |  |  |
| Diffraktometer                | Philips PW1100                                                           | Siemens AED2                        | Siemens AED2               |  |  |
| Strahlung/Monochromator       | Mo K $\alpha$ , Feinfokus / Graphit                                      |                                     |                            |  |  |
| 20-Bereich (°)                | 5-70                                                                     | 5-70                                | 5-70                       |  |  |
| Schrittweite (°20)            | 0,030                                                                    | 0,030                               | 0,030                      |  |  |
| Messzeit/Schritt              | variabel 1-3 s                                                           | 1–3 s                               | 2-5 s                      |  |  |
| Korrekturen                   | Polarisations- und Lorentzfaktor, empirische                             |                                     |                            |  |  |
|                               | DIFABS [19]                                                              | 19] Absorptionskorrektur EMPIR [20] |                            |  |  |
| Anzahl symmetrieunabhängiger  |                                                                          | •                                   |                            |  |  |
| Reflexe                       | 780                                                                      | 721                                 | 807                        |  |  |
| Anzahl der verwendeten        |                                                                          |                                     |                            |  |  |
| Reflexe                       | 486 $(F_0 > 2\sigma(F_0))$                                               | 255 $(F_0 > 4\sigma(F_0))$          | 463 $(F_0 > 5\sigma(F_0))$ |  |  |
| Anzahl der Parameter          | 27                                                                       | 27                                  | 27                         |  |  |
| Gütefaktor                    | R = 0,074                                                                | R = 0.087                           | R = 0.076                  |  |  |
|                               | $R_{\rm w} = 0,063$                                                      | $R_{\rm w} = 0.059$                 | $R_{\rm w} = 0.057$        |  |  |
|                               | $w = 5,7357/\sigma^2(F_0)$                                               | $w = 2,7983/\sigma^2(F_0)$          | $w = 4,2170/\sigma^2(F_0)$ |  |  |
|                               | $R_{\rm W} = (\Sigma w^{1/2} \ F_0\  -  F_c\ ) / (\Sigma w^{1/2}  F_0 )$ |                                     |                            |  |  |

 $TABELLE 1. Kristallographische Daten und Messbedingungen für Ba_6Rh_2Yb_{2,33}Al_{1,67}O_{15}(I), Ba_{5,5}Ca_{0,5}Rh_2Y_2Al_2O_{15}(II) und Ba_6Rh_4Al_2O_{15}(II) mit Standardabweichungen in Klammern$ 

men mit den verfeinerten Besetzungsfaktoren überein.

Mit Film- und Vierkreisdiffraktometermessungen wurden die kristallographischen Daten bestimmt. Diese sind mit den Messbedingungen in Tabelle 1 zusammengefasst. Mit dem Programm SHELX-76 [12] wurden die Atomparameter verfeinert. Die abschliessenden Werte gibt Tabelle 2 wieder. Mit den Daten von Tabelle 2 berechnen sich die in Tabelle 3 enthaltenen interatomaren Abstände.

# 3. Diskussion

Der Bautyp der 6L-Perowskite wurde früher, wie zum Beispiel auch für Ba<sub>6</sub>Rh<sub>2</sub>Ho<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> [1] beschrieben. Zum Verständnis der hier untersuchten Besetzung der MO<sub>6</sub>-Einzel- und M<sub>2</sub>O<sub>9</sub>-Doppeloktaeder mit Ln<sup>3+</sup>, Al<sup>3+</sup> und Rh<sup>3+</sup> sei auf Abb. 1 verwiesen. Diese macht deutlich, dass längs [001] flächenverknüpfte Oktaederdoppel mit isolierten Einzeloktaedern in Schichten angeordnet sind. Der Bezug der Polyederschraffur zu den in Tabelle 2 aufgeführten Parametern ist folgender: Die Polyeder um die Metallage(5) sind eng, um die Lage(6) weit und um Lage(7) mit mittlerer Dichte schraffiert. In Ba<sub>6</sub>Rh<sub>2,33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub> (I), Ba<sub>5,5</sub>Ca<sub>0,5</sub>-Rh<sub>2</sub>Y<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> (II) und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub> (III) liegt eine unterschiedliche Metallverteilung vor.

In I sind die eng schraffierten Oktaederdoppel zu 3/4 mit Al<sup>3+</sup> und 1/4 mit Rh<sup>3+</sup>, die weit schraffierten  $M_2O_9$ -Polyeder nur mit Rh<sup>3+</sup> und die Einzeloktaeder



Abb. 1. Perspektivische Wiedergabe der Polyederverknüpfung in Ba<sub>6</sub>Rh<sub>2,33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub>, Ba<sub>5,5</sub>Ca<sub>0,5</sub>Rh<sub>2</sub>Y<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub>. Engschraffierte M<sub>2</sub>O<sub>9</sub>=Baugruppen beziehen sich auf Lage(5) der Tabelle 2, die weit schraffierten auf Lage(6) und die MO<sub>6</sub>-Einzeloktader (mittlere Schraffur) auf Lage(7).

mit Yb<sup>3+</sup> besetzt. In der gleichen Reihenfolge gilt für Substanz II die Besetzung mit Al<sup>3+</sup>, Rh<sup>3+</sup> und Y<sup>3+</sup>. Man erkennt, dass in II gegenüber Substanz I eine geordnete Metallverteilung vorliegt. Die Ordnung betrifft jedoch nicht die Ba(1)-Position, die zur Hälfte mit Ca<sup>2+</sup> besetzt ist. Im Zusammenhang mit der

TABELLE 2. Atomparameter für Ba<sub>6</sub>Rh<sub>2,33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub> (I), Ba<sub>5,5</sub>Ca<sub>0,5</sub>Rh<sub>2</sub>Y<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> (II) und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub> (III) mit Standardabweichungen in Klammern. In der Raumgruppe  $D_{3h}^1 - P\bar{o}m2$ sind folgende Punktlagen besetzt:

| Lage         |      | x        | у         | z          | B (Å <sup>2</sup> ) |
|--------------|------|----------|-----------|------------|---------------------|
| I            |      |          |           |            |                     |
| Ba1          | (1a) | 0,0      | 0,0       | 0,0        | 2,18(16)            |
| Ba2          | (2h) | 0,3333   | 0,6667    | 0,1795(3)  | 1,03(7)             |
| Ba3          | (2i) | 0,6667   | 0,3333    | 0,6465(3)  | 0,89(6)             |
| Ba4          | (1b) | 0,0      | 0,0       | 0,5        | 0,95(11)            |
| 3/4Al:1/4Rh  | (2i) | 0,6667   | 0,3333    | 0,0971(9)  | 0,93(19)            |
| Rh           | (2h) | 0,3333   | 0,6667    | 0,5860(4)  | 0,99(9)             |
| Yb           | (2g) | 0,0      | 0,0       | 0,2487(3)  | 0,54(4)             |
| 01           | (6n) | 0,360(6) | 0,180(3)  | 0,154(2)   | 1,78(35)            |
| 2/3O2        | (3k) | 0,497(4) | 0,503(4)  | 0,5        | -0,38(35)           |
| O3           | (6n) | 0,167(3) | 0,334(6)  | 0,337(2)   | 0,47(26)            |
| 1/304        | (3j) | 0,518(5) | 0,036(10) | 0,0        | 0,10(42)            |
| II           |      |          |           |            |                     |
| 1/2Ba1:1/2Ca | (1a) | 0,0      | 0,0       | 0,0        | 2,47(10)            |
| Ba2          | (2h) | 0,3333   | 0,6667    | 0,1741(5)  | 1,27(7)             |
| Ba3          | (2i) | 0,6667   | 0,3333    | 0,6498(5)  | 1,37(8)             |
| Ba4          | (1b) | 0,0      | 0,0       | 0,5        | 0,23(8)             |
| Al           | (2i) | 0,6667   | 0,3333    | 0,1230(24) | 1,99(10)            |
| Rh           | (2h) | 0,3333   | 0,6667    | 0,5878(6)  | 1,83(9)             |
| Y            | (2g) | 0,0      | 0,0       | 0,2451(12) | 0,83(9)             |
| O1           | (6n) | 0,344(8) | 0,172(4)  | 0,152(2)   | 2,97(10)            |
| 2/3O2        | (3k) | 0,498(4) | 0,502(4)  | 0,5        | 0,72(11)            |
| O3           | (6n) | 0,180(4) | 0,360(9)  | 0,335(2)   | 2,68(10)            |
| 1/3O4        | (3j) | 0,510(5) | 0,020(10) | 0,0        | 0,85(11)            |
| III          |      |          |           |            |                     |
| Ba1          | (1a) | 0,0      | 0,0       | 0,0        | 0,26(9)             |
| Ba2          | (2h) | 0,3333   | 0,6667    | 0,1504(3)  | 1,24(6)             |
| Ba3          | (2i) | 0,6667   | 0,3333    | 0,6734(3)  | 1,26(6)             |
| Ba4          | (1b) | 0,0      | 0,0       | 0,5        | 2,12(13)            |
| Rh           | (2i) | 0,6667   | 0,3333    | 0,0874(3)  | 1,05(8)             |
| 2/3Al:1/3Rh  | (2h) | 0,3333   | 0,6667    | 0,5969(7)  | 1,19(15)            |
| 2/3Rh:1/3Al  | (2g) | 0,0      | 0,0       | 0,2544(8)  | 1,20(11)            |
| 01           | (6n) | 0,344(4) | 0,172(2)  | 0,165(1)   | 1,56(19)            |
| 1/3O2        | (3k) | 0,477(3) | 0,523(3)  | 0,5        | 0,34(21)            |
| O3           | (6n) | 0,171(2) | 0,343(4)  | 0,345(1)   | 2,32(20)            |
| 2/304        | (3j) | 0,504(2) | 0,008(5)  | 0,0        | 0,20(20)            |

TABELLE 3. Interatomare Abstände (Å) für  $Ba_6Rh_{2,33}Yb_2-Al_{1,67}O_{15}$  (I),  $Ba_{5,5}Ca_{0,5}Rh_2Y_2Al_2O_{15}$  (II) und  $Ba_6Rh_4Al_2O_{15}$  (III) mit Standardabweichungen in Klammern

| I                       |                                                    | II                         |                                                    |  |  |  |
|-------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------|--|--|--|
| Ba1–O1<br>Ba1–O4        | 2,903(30) (6x)<br>2,923(39) (6x)                   | Ba1/Ca–O1<br>Ba1–O4        | 2,834(15) (6x)<br>2,934(10) (6x)                   |  |  |  |
| Ba2O3<br>Ba2O1<br>Ba2O4 | 2,859(30) (3x)<br>2,954(24) (6x)<br>3,230(30) (3x) | Ba2–O3<br>Ba2–O1<br>Ba2–O4 | 2,830(15) (3x)<br>2,948(10) (6x)<br>3,127(10) (3x) |  |  |  |
| Ba3O2<br>Ba3O3<br>Ba3O1 | 2,752(18) (3x)<br>2,937(25) (6x)<br>3,312(30) (3x) | Ba3–O2<br>Ba3–O3<br>Ba3–O1 | 2,770(6) (3x)<br>2,941(10) (6x)<br>3,353(16) (3x)  |  |  |  |
| Ba4–O2<br>Ba4–O3        | 2,927(17) (6x)<br>2,929(30) (6x)                   | Ba4O2<br>Ba4O3             | 2,930(4) (6x)<br>3,041(15) (6x)                    |  |  |  |
| Al/Rh–O1<br>Al/Rh–O4    | 1,764(31) (3x)<br>2,073(38) (3x)                   | AlO1<br>AlO4               | 1,676(16) (3x)<br>2,451(17) (3x)                   |  |  |  |
| Al/Rh–Al/Rh             | 2,847(26)                                          | Al-Al                      | 3,746(35)                                          |  |  |  |
| Rh–O3<br>Rh–O2<br>Rh–Rh | 2,029(30) (3x)<br>2,084(24) (3x)<br>2,522(12)      | Rh–O3<br>Rh–O2<br>Rh–Rh    | 1,939(15) (3x)<br>2,123(7) (3x)<br>2,592(12)       |  |  |  |
| ҮbО3<br>ҮbО1            | 2,131(30) (3x)<br>2,293(30) (3x)                   | YO3<br>YO1                 | 2,220(16) (3x)<br>2,236(16) (3x)                   |  |  |  |
| III                     |                                                    |                            |                                                    |  |  |  |
| Ba1–O4<br>Ba1–O1        | 2,933(19) (6x)<br>2,979(17) (6x)                   | RhO1<br>RhO4<br>RhRh       | 1,994(19) (3x)<br>2,090(20) (3x)<br>2,557(9)       |  |  |  |
| Ba2O4<br>Ba2O1<br>Ba2O3 | 2,801(16) (3x)<br>2,941(16) (6x)<br>3,287(17) (3x) | Al/Rh–O3<br>Al/Rh–O2       | 1,851(20) (3x)<br>2,035(17) (3x)                   |  |  |  |
| Ba3O1<br>Ba3O3<br>Ba3O2 | 2,876(17) (3x)<br>2,949(17) (6x)<br>3,185(14) (3x) | Rh/Al-O1<br>Rh/Al-O3       | 2,182(10) (3x)<br>2,189(20) (3x)                   |  |  |  |
|                         | -,(, (-,,                                          | Rh/Al-Rh/Al                | 5,865(4)                                           |  |  |  |
| Ba4O3<br>Ba4O2          | 2,859(17) (6x)<br>2,942(13) (6x)                   | Al/Rh–Al/Rh                | 2,835(21)                                          |  |  |  |

Unterbesetzung bestimmter Sauerstofflagen wird auf diesen Sachverhalt später eingegangen.

Interessant ist der 6L-Perowskit III der Zusammensetzung  $Ba_6Rh_4Al_2O_{15}$ . In dieser Verbindung ist kein Lanthanoidion enthalten. Die eng schraffierten  $M_2O_9$ -Baugruppen sind jetzt anstelle von  $Al^{3+}/Rh^{3+}$  (I) bzw.  $Al^{3+}$  (II) nur mit  $Rh^{3+}$ , die weit schraffierten mit  $2/3 Al^{3+}$  und  $1/3 Rh^{3+}$  und die Einzeloktaeder mit  $2/3 Rh^{3+}$  und  $1/3 Al^{3+}$  besetzt. Ein Blick auf die interatomaren Abstände bestätigt diese Polyederbesetzung. Die Metallverteilung zeigt, dass  $Rh^{3+}$  und  $Al^{3+}$  in den Einzeloktaedern kristallchemisch die  $Ln^{3+}$ -Ionen vertreten. Es wird aber auch deutlich, dass keine Präferenz für  $Al^{3+}$  auf bestimmten Punktlagen bzw. in den  $M_2O_9$ -Baugruppen existiert. In der älteren Arbeit über  $Ba_6Rh_2Ho_2Al_2O_{15}$  [1] wurde im Detail gezeigt, dass die mit  $Rh^{3+}$  besetzten  $M_2O_9$ -Baugruppen die Metallionen etwa im Zentrum der Polyeder enthalten. Dies gibt Abb. 2(a) wieder. Werden die  $M_2O_9$ -Oktaederdoppel mit Al<sup>3+</sup> besetzt, so weichen diese Ionen aus der zentralen Position in Richtung auf die Oktaederdreiecksflächen aus, was in Abb. 2(b) gut zu erkennen ist. So entstehen relativ lange Al-Al-Abstände (3,68 Å) im Vergleich zu den kurzen Rh-Rh-Abständen (2,56 Å). Die gleichen Effekte sind auch an den Verbindungen I-III zu beobachten.

In I ist die Lage(5) mit 3/4 Al<sup>3+</sup> und 1/4 Rh<sup>3+</sup> statistisch besetzt. Die Auslenkung der Metallionen aus den Oktaedermitten ist vorhanden, jedoch kleiner (Al/Rh–Al/Rh 2,847 Å) als in Ba<sub>6</sub>Rh<sub>2</sub>Ho<sub>2</sub>Al<sub>2</sub>O<sub>15</sub> oder in II (Al–Al 3,746 Å), wo die gleichen Positionen nur mit



Abb. 2. (a)  $Rh_2O_9$ -Oktaederdoppel, Lage(6) in  $Ba_6Rh_{2,33}Yb_2$ -Al<sub>1,67</sub>O<sub>15</sub> und  $Ba_{5,5}Ca_{0,5}Rh_2Y_2Al_2O_{15}$ ; (b)  $Al_2O_9$ -Oktaederdoppel, Lage(5) in  $Ba_{5,5}Ca_{0,5}Rh_2Y_2Al_2O_{15}$ ; (c) Statistisch mit  $Al^{3+}$  und  $Rh^{3+}$  besetzte  $M_2O_9$ -Baugruppen, Lage(5) in  $Ba_6Rh_{2,33}Yb_2$ - $Al_{1,67}O_{15}$  oder Lage(6) in  $Ba_6Rh_4Al_2O_{15}$ .

 $Al^{3+}$  aufgefüllt sind (Abb. 2(c)). Überraschenderweise ist in III die gleiche M<sub>2</sub>O<sub>9</sub>-Baugruppe nur mit Rh<sup>3+</sup> besetzt, eine Auslenkung von Rh<sup>3+</sup> aus den Polyedermitten ist nicht gegeben (Rh-Rh 2,56 Å).

Das in Abb. 1 in der Mitte der Elementarzelle gezeichnete Oktaederdoppel (Lage(6), Tab. 2) ist in  $Ba_6Rh_2Ho_2Al_2O_{15}$  (Rh-Rh 2, 522 Å), in I (Rh-Rh 2,548 Å) und in II (2,58 Å) nur mit Rh<sup>3+</sup> besetzt. Die Folge ist eine Zentrierung der Polyeder durch Rh<sup>3+</sup>. In der Verbindung III dagegen wird das gleiche Oktaederdoppel mit 2/3 Al<sup>3+</sup> und 1/3 Rh<sup>3+</sup> statistisch aufgefüllt. Die Abstände dieser Lagen sind durch den Einfluss von Al<sup>3+</sup> wieder merklich länger (Al/Rh-Al/ Rh 2,84 Å). Abbildung 2(c) zeigt die gegenüber Abb. 2(b) geringere Auslenkung aus den Oktaedermitten.

Bereits an  $Ba_6Rh_2Ho_2Al_2O_{15}$  [1] wurde gezeigt, dass bestimmte Sauerstofflagen ein Defizit aufweisen. Dieses betrifft immer jene  $O^{2-}$ , die in den  $M_2O_9$ -Baugruppen als gemeinsame Fläche auftreten. Handelt es sich um eine Rh<sub>2</sub>O<sub>9</sub>-Gruppe, sind nur zwei der drei O<sup>2-</sup>-Plätze besetzt (effektiv Rh<sub>2</sub>O<sub>8</sub>). In den Al<sub>2</sub>O<sub>9</sub>-Oktaederdoppeln ist das Defizit an O<sup>2-</sup> grösser, es fehlen von drei O<sup>2-</sup> zwei (effektiv Al<sub>2</sub>O<sub>7</sub>=Doppeltetraeder). In I, II und III gibt es Rh<sub>2</sub>O<sub>9</sub>-Baugruppen, deren verknüpfende Flächen ebenfalls einen Unterschuss von einem O<sup>2-</sup>-Ion aufweisen (vergl. Tabelle 2). Bemerkenswert sind auch jene M<sub>2</sub>O<sub>9</sub>-Baugruppen, die durch den Unterschuss an O<sup>2-</sup> zu M<sub>2</sub>O<sub>7</sub>-Doppeltetraedern abgebaut werden. Diese sind in den Stoffen I (3/4 Al<sup>3+</sup> + 1/4 Rh<sup>3+</sup>) und III (2/3 Al<sup>3+</sup> + 1/3 Rh<sup>3+</sup>) partiell mit Rh<sup>3+</sup> besetzt. Sie verhalten sich bezüglich des Sauerstoffdefizits jedoch wie vollständig mit Al<sup>3+</sup> besetzte M<sub>2</sub>O<sub>9</sub>-Doppeloktaeder, d.h. die Koordination erniedrigt sich auf C.N.=4, es entstehen M<sub>2</sub>O<sub>7</sub>-Doppeltetraeder.

Wie erwähnt, ist in II ein Teil der Ba<sup>2+</sup>-Ionen durch Ca<sup>2+</sup> ersetzt. Der Austausch erfolgt nur auf der Lage Ba(1), deren Koordinationssphäre durch das Sauerstoffdefizit am stärksten betroffen ist. Die ursprüngliche für Perowskite typische Koordinationszahl C.N. = 12 erniedrigt sich für die mit 1/2 Ba<sup>2+</sup> und 1/2 Ca<sup>2+</sup> besetzte Punktlage auf C.N. = 8 (zweifach überkapptes trigonales Prisma). Für die anderen Bariumlagen reduziert sich die kuboktaedrische Umgebung im Mikrobereich auf C.N. = 11, bzw. C.N. = 10. Die starke Erniedrigung der Koordinationszahl um Lage Ba(1) macht die bevorzugte Besetzung mit Ca<sup>2+</sup> und Ba<sup>2+</sup> verständlich.

Die Isotypie von I-III mit Ba6Rh2H02Al2O15 impliziert die früher [1] diskutierte Verwandtschaft zu  $\alpha$ -Ba<sub>2</sub>ScAlO<sub>5</sub> [13]. Neu an den hier untersuchten Stoffen ist jedoch die Beobachtung, dass die M2O9-Doppeloktaeder beliebig mit Rh<sup>3+</sup> und Al<sup>3+</sup> besetzt werden können und Rhodium kristallchemisch die Lanthanoide ersetzen kann. Bei Berechnungen des Coulombanteils der Gitterenergie (MAPLE, [14, 15]) wurde beobachtet, dass die auf einzelne Punktlagen bezogenen partiellen Anteile zur Gitterenergie am besten angeglichen sind, wenn die Substanzen mit statistisch besetzten M<sub>2</sub>O<sub>9</sub>-Baugruppen Ba<sub>6</sub>Rh<sub>2.33</sub>Yb<sub>2</sub>Al<sub>1,67</sub>O<sub>15</sub> (I) und Ba<sub>6</sub>Rh<sub>4</sub>Al<sub>2</sub>O<sub>15</sub> (III) Anteile von Rh<sup>4+</sup> enthalten [16]. Dadurch verringert sich das Sauerstoffdefizit geringfügig. Es erscheint verständlich, dass das kleinere Rh4+-Ion besser in die (Al/Rh)<sub>2</sub>O<sub>9-r</sub>-Polyeder passt. Im Mikrobereich könnte der zusätzliche Sauerstoff auf rhodiumreichere Doppelpolyeder entfallen. Diese Spekulation lässt sich mit den zur Verfügung stehenden Methoden jedoch nicht beweisen [16].

Alle Rechnungen wurden auf der elektronischen Rechenanlage VAX 8550 der Universität Kiel und IBM RS/6000 des Instituts für Anorganische Chemie durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Programm [17, 18] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich technische Zusammenarbeit mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56878, des Autors und Zeitschriftenzitats angefordert werden.

# Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

# Literatur

- 1 D. Schlüter und Hk. Müller-Buschbaum, J. Alloys Comp., im Druck.
- 2 I. Thumm, U. Treiber und S. Kemmler-Sack, J. Solid State Chem., 35 (1980) 156.
- 3 A. Ehmann, S. Kemmler-Sack, B. Betz und H. U. Schaller, J. Less-Common Met., 106 (1985) 327.
- 4 Ch. Lang und Hk. Müller-Buschbaum, J. Less-Common Met., 161 (1990) 1.

- 5 Ch. Lang und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 568 (1989) 29.
- 6 H. U. Schaller, S. Kemmler-Sach und A. Ehmann, J. Less-Common Met., 97 (1984) 299.
- 7 P. C. Donohue, L. Katz und R. Ward, Inorg. Chem., 5 (1966) 335.
- 8 J. Wilkens und Hk. Müller-Buschbaum, J. Less-Common Met., 171 (1991) 255.
- 9 Ch. Lang und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 587 (1990) 39.
- 10 J. Wilkens und Hk. Müller-Buschbaum, Acta Chem. Scand., 45 (1991) 812.
- 11 J. Wilkens und Hk. Müller-Buschbaum, J. Alloys Comp., 182 (1992) 265.
- 12 G. M. Sheldrick, SHELX-Program for Crystal Structure Determination, Version 1.1. 1976, Cambridge University Press, Cambridge 1976.
- 13 E. V. Antipov, R. V. Shpanchenko, L. N. Lykova und L. M. Kovba, Kristallografiya, 35 (1990) 213.
- 14 R. Hoppe, Angew. Chem., 78 (1966) 52.
- 15 R. Hoppe, Adv. Fluorine Chem., 6 (1970) 387.
- 16 D. Schlüter, Dissertation Univ. Kiel, 1993.
- 17 C. K. Johnson, *Report ORNL-3794*, Oak Ridge National Laboratory, TN, USA, 1965.
- 18 K.-B. Plötz, Dissertation, Universität Kiel, 1982.
- 19 N. Walker und D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
- 20 EMPIR, Programm, zur empirischen (Psi-Scan) Absorptionskorrektur, Fa. Stoe & Cie, Darmstadt, 1987.